题面
解法
MLE了23333
~~为什么空间不给256MB,这样我就能开几个5000*5000的数组了~~
考虑一种树形dp的方法吧
\(f_{i,j}\)表示从点\(i\)向下走\(j\)步并选出两个不在\(i\)同一个子树的方案数,\(g_{i,j}\)表示从\(i\)出发在\(i\)子树外走\(j\)步的方案数
那么答案即为\(\sum f_{i,j}×g_{i,j}\)
注意统计时可能会出现重复的情况
时间复杂度:\(O(n^2)\)
当然,还有一种复杂度为\(O(n^2)\)的方法,直接枚举三个点的中心点,然后暴力dfs统计答案
感觉这个比较容易实现
代码
#include#define N 5010using namespace std;template void chkmax(node &x, node y) {x = max(x, y);}template void chkmin(node &x, node y) {x = min(x, y);}template void read(node &x) { x = 0; int f = 1; char c = getchar(); while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();} while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;}struct Edge { int next, num;} e[N * 3];int n, cnt, p[N], f[N][N], g[N][N], s[N][N];long long ans = 0;void add(int x, int y) { e[++cnt] = (Edge) {e[x].next, y}; e[x].next = cnt;}void dpI(int x, int fa) { s[x][0] = 1, p[x] = fa; int tot = 0; for (int p = e[x].next; p; p = e[p].next) { int k = e[p].num; if (k == fa) continue; dpI(k, x); tot++; for (int i = 1; i <= n; i++) { if (tot >= 3) ans += 1ll * f[x][i] * s[k][i - 1]; f[x][i] += s[x][i] * s[k][i - 1]; s[x][i] += s[k][i - 1]; } }}void dfs(int x, int fa, int y, int sum) { g[y][sum]++; for (int p = e[x].next; p; p = e[p].next) if (e[p].num != fa) dfs(e[p].num, x, y, sum + 1);}int main() { read(n); cnt = n; for (int i = 1; i < n; i++) { int x, y; read(x), read(y); add(x, y), add(y, x); } dpI(1, 0); for (int i = 1; i <= n; i++) for (int q = e[i].next; q; q = e[q].next) if (e[q].num == p[i]) dfs(p[i], i, i, 1); for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) ans += 1ll * f[i][j] * g[i][j]; cout << ans << "\n"; return 0;}